Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Environ Sci Technol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656997

RESUMO

Because humans spend about one-third of their time asleep in their bedrooms and are themselves emission sources of volatile organic compounds (VOCs), it is important to specifically characterize the composition of the bedroom air that they experience during sleep. This work uses real-time indoor and outdoor measurements of volatile organic compounds (VOCs) to examine concentration enhancements in bedroom air during sleep and to calculate VOC emission rates associated with sleeping occupants. Gaseous VOCs were measured with proton-transfer reaction time-of-flight mass spectrometry during a multiweek residential monitoring campaign under normal occupancy conditions. Results indicate high emissions of nearly 100 VOCs and other species in the bedroom during sleeping periods as compared to the levels in other rooms of the same residence. Air change rates for the bedroom and, correspondingly, emission rates of sleeping-associated VOCs were determined for two bounding conditions: (1) air exchange between the bedroom and outdoors only and (2) air exchange between the bedroom and other indoor spaces only (as represented by measurements in the kitchen). VOCs from skin oil oxidation and personal care products were present, revealing that many emission pathways can be important occupant-associated emission factors affecting bedroom air composition in addition to direct emissions from building materials and furnishings.

2.
Environ Sci Technol ; 58(11): 5047-5057, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437595

RESUMO

The chemical composition of incense-generated organic aerosol in residential indoor air has received limited attention in Western literature. In this study, we conducted incense burning experiments in a single-family California residence during vacancy. We report the chemical composition of organic fine particulate matter (PM2.5), associated emission factors (EFs), and gas-particle phase partitioning for indoor semivolatile organic compounds (SVOCs). Speciated organic PM2.5 measurements were made using two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC×GC-HR-ToF-MS) and semivolatile thermal desorption aerosol gas chromatography (SV-TAG). Organic PM2.5 EFs ranged from 7 to 31 mg g-1 for burned incense and were largely comprised of polar and oxygenated species, with high abundance of biomass-burning tracers such as levoglucosan. Differences in PM2.5 EFs and chemical profiles were observed in relation to the type of incense burned. Nine indoor SVOCs considered to originate from sources other than incense combustion were enhanced during incense events. Time-resolved concentrations of these SVOCs correlated well with PM2.5 mass (R2 > 0.75), suggesting that low-volatility SVOCs such as bis(2-ethylhexyl)phthalate and butyl benzyl phthalate partitioned to incense-generated PM2.5. Both direct emissions and enhanced partitioning of low-volatility indoor SVOCs to incense-generated PM2.5 can influence inhalation exposures during and after indoor incense use.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , California , Aerossóis/análise
3.
Ann Am Thorac Soc ; 21(3): 365-376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426826

RESUMO

Indoor sources of air pollution worsen indoor and outdoor air quality. Thus, identifying and reducing indoor pollutant sources would decrease both indoor and outdoor air pollution, benefit public health, and help address the climate crisis. As outdoor sources come under regulatory control, unregulated indoor sources become a rising percentage of the problem. This American Thoracic Society workshop was convened in 2022 to evaluate this increasing proportion of indoor contributions to outdoor air quality. The workshop was conducted by physicians and scientists, including atmospheric and aerosol scientists, environmental engineers, toxicologists, epidemiologists, regulatory policy experts, and pediatric and adult pulmonologists. Presentations and discussion sessions were centered on 1) the generation and migration of pollutants from indoors to outdoors, 2) the sources and circumstances representing the greatest threat, and 3) effective remedies to reduce the health burden of indoor sources of air pollution. The scope of the workshop was residential and commercial sources of indoor air pollution in the United States. Topics included wood burning, natural gas, cooking, evaporative volatile organic compounds, source apportionment, and regulatory policy. The workshop concluded that indoor sources of air pollution are significant contributors to outdoor air quality and that source control and filtration are the most effective measures to reduce indoor contributions to outdoor air. Interventions should prioritize environmental justice: Households of lower socioeconomic status have higher concentrations of indoor air pollutants from both indoor and outdoor sources. We identify research priorities, potential health benefits, and mitigation actions to consider (e.g., switching from natural gas to electric stoves and transitioning to scent-free consumer products). The workshop committee emphasizes the benefits of combustion-free homes and businesses and recommends economic, legislative, and education strategies aimed at achieving this goal.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Criança , Estados Unidos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Gás Natural , Monitoramento Ambiental , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/análise
4.
Proc Natl Acad Sci U S A ; 120(50): e2308832120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048461

RESUMO

Building conditions, outdoor climate, and human behavior influence residential concentrations of fine particulate matter (PM2.5). To study PM2.5 spatiotemporal variability in residences, we acquired paired indoor and outdoor PM2.5 measurements at 3,977 residences across the United States totaling >10,000 monitor-years of time-resolved data (10-min resolution) from the PurpleAir network. Time-series analysis and statistical modeling apportioned residential PM2.5 concentrations to outdoor sources (median residential contribution = 52% of total, coefficient of variation = 69%), episodic indoor emission events such as cooking (28%, CV = 210%) and persistent indoor sources (20%, CV = 112%). Residences in the temperate marine climate zone experienced higher infiltration factors, consistent with expectations for more time with open windows in milder climates. Likewise, for all climate zones, infiltration factors were highest in summer and lowest in winter, decreasing by approximately half in most climate zones. Large outdoor-indoor temperature differences were associated with lower infiltration factors, suggesting particle losses from active filtration occurred during heating and cooling. Absolute contributions from both outdoor and indoor sources increased during wildfire events. Infiltration factors decreased during periods of high outdoor PM2.5, such as during wildfires, reducing potential exposures from outdoor-origin particles but increasing potential exposures to indoor-origin particles. Time-of-day analysis reveals that episodic emission events are most frequent during mealtimes as well as on holidays (Thanksgiving and Christmas), indicating that cooking-related activities are a strong episodic emission source of indoor PM2.5 in monitored residences.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Crowdsourcing , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Material Particulado/análise , Tamanho da Partícula
5.
Environ Sci Technol ; 57(36): 13569-13578, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639667

RESUMO

Ozone concentrations tend to be substantially lower indoors than outdoors, largely because of ozone reactions with indoor surfaces. When there are no indoor sources of ozone, a common condition, the net concentration of gaseous products derived from indoor ozone chemistry scales linearly with the difference between outdoor and indoor ozone concentrations, termed "ozone loss." As such, ozone loss is a metric that might be used by epidemiologists to disentangle the adverse health effects of ozone's oxidation products from those of exposure to ozone itself. The present paper examines the characteristics, potential utility, and limitations of the ozone loss concept. We show that for commonly occurring indoor conditions, the ozone loss concentration is directly proportional to the total rate constant for ozone removal on surfaces (ksum) and inversely proportional to the net removal of ozone by air exchange (λ) plus surface reactions (ksum). It follows that the ratio of indoor ozone to ozone loss is equal to the ratio of λ to ksum. Ozone loss is a promising metric for probing potential adverse health effects resulting from exposures to products of indoor ozone chemistry. Notwithstanding its virtues, practitioners using it should be mindful of the limitations discussed in this paper.


Assuntos
Ozônio
6.
Environ Sci Technol ; 57(8): 3260-3269, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36796310

RESUMO

Semivolatile organic compounds (SVOCs) represent an important class of indoor pollutants. The partitioning of SVOCs between airborne particles and the adjacent air influences human exposure and uptake. Presently, little direct experimental evidence exists about the influence of indoor particle pollution on the gas-particle phase partitioning of indoor SVOCs. In this study, we present time-resolved gas- and particle-phase distribution data for indoor SVOCs in a normally occupied residence using semivolatile thermal desorption aerosol gas chromatography. Although SVOCs in indoor air are found mostly in the gas phase, we show that indoor particles from cooking, candle use, and outdoor particle infiltration strongly affect the gas-particle phase distribution of specific indoor SVOCs. From gas- and particle-phase measurements of SVOCs spanning a range of chemical functionalities (alkanes, alcohols, alkanoic acids, and phthalates) and volatilities (vapor pressures from 10-13 to 10-4 atm), we find that the chemical composition of the airborne particles influences the partitioning of individual SVOC species. During candle burning, the enhanced partitioning of gas-phase SVOCs to indoor particles not only affects the particle composition but also enhances surface off-gassing, thereby increasing the total airborne concentration of specific SVOCs, including diethylhexyl phthalate.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Dietilexilftalato , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Dietilexilftalato/análise , Poluentes Atmosféricos/análise , Gases/análise , Culinária
7.
Environ Sci Technol ; 56(22): 15427-15436, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327170

RESUMO

Volatile methyl siloxanes (VMS) are ubiquitous in indoor environments due to their use in personal care products. This paper builds on previous work identifying sources of VMS by synthesizing time-resolved proton-transfer reaction time-of-flight mass spectrometer VMS concentration measurements from four multiweek indoor air campaigns to elucidate emission sources and removal processes. Temporal patterns of VMS emissions display both continuous and episodic behavior, with the relative importance varying among species. We find that the cyclic siloxane D5 is consistently the most abundant VMS species, mainly attributable to personal care product use. Two other cyclic siloxanes, D3 and D4, are emitted from oven and personal care product use, with continuous sources also apparent. Two linear siloxanes, L4 and L5, are also emitted from personal care product use, with apparent additional continuous sources. We report measurements for three other organosilicon compounds found in personal care products. The primary air removal pathway of the species examined in this paper is ventilation to the outdoors, which has implications for atmospheric chemistry. The net removal rate is slower for linear siloxanes, which persist for days indoors after episodic release events. This work highlights the diversity in sources of organosilicon species and their persistence indoors.


Assuntos
Compostos de Organossilício , Siloxanas , Siloxanas/análise , Monitoramento Ambiental , Ventilação
9.
Indoor Air ; 32(1): e12970, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34873752

RESUMO

Knowledge about person-to-person transmission of SARS-CoV-2 is reviewed, emphasizing three components: emission of virus-containing particles and drops from infectious persons; transport and fate of such emissions indoors; and inhalation of viral particles by susceptible persons. Emissions are usefully clustered into three groups: small particles (diameter 0.1-5 µm), large particles (5-100 µm), and ballistic drops (>100 µm). Speaking generates particles and drops across the size spectrum. Small particles are removed from indoor air at room scale by ventilation, filtration, and deposition; large particles mainly deposit onto indoor surfaces. Proximate exposure enhancements are associated with large particles with contributions from ballistic drops. Masking and social distancing are effective in mitigating transmission from proximate exposures. At room scale, masking, ventilation, and filtration can contribute to limit exposures. Important information gaps prevent a quantitative reconciliation of the high overall global spread of COVID-19 with known transmission pathways. Available information supports several findings with moderate-to-high confidence: transmission occurs predominantly indoors; inhalation of airborne particles (up to 50 µm in diameter) contributes substantially to viral spread; transmission occurs in near proximity and at room scale; speaking is a major source of airborne SARS-CoV-2 virus; and emissions can occur without strong illness symptoms.


Assuntos
Aerossóis , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , COVID-19 , COVID-19/transmissão , Humanos , SARS-CoV-2 , Ventilação
10.
Indoor Air ; 32(1): e12942, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34609012

RESUMO

Because people spend most of their time indoors, much of their exposure to ozone occurs in buildings, which are partially protective against outdoor ozone. Measurements in approximately 2000 indoor environments (residences, schools, and offices) show a central tendency for average indoor ozone concentration of 4-6 ppb and an indoor to outdoor concentration ratio of about 25%. Considerable variability in this ratio exists among buildings, as influenced by seven building-associated factors: ozone removal in mechanical ventilation systems, ozone penetration through the building envelope, air-change rates, ozone loss rate on fixed indoor surfaces, ozone loss rate on human occupants, ozone loss by homogeneous reaction with nitrogen oxides, and ozone loss by reaction with gas-phase organics. Among these, the most important are air-change rates, ozone loss rate on fixed indoor surfaces, and, in densely occupied spaces, ozone loss rate on human occupants. Although most indoor ozone originates outdoors and enters with ventilation air, indoor emission sources can materially increase indoor ozone concentrations. Mitigation technologies to reduce indoor ozone concentrations are available or are being investigated. The most mature of these technologies, activated carbon filtration of mechanical ventilation supply air, shows a high modeled health-benefit to cost ratio when applied in densely occupied spaces.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Ozônio/análise , Instituições Acadêmicas , Ventilação
12.
Environ Sci Process Impacts ; 23(10): 1476-1487, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34523653

RESUMO

Particle emissions from cooking are a major contributor to residential indoor air pollution and could also contribute to ambient concentrations. An important constituent of these emissions is light-absorbing carbon, including black carbon (BC) and brown carbon (BrC). This work characterizes the contributions of indoor and outdoor sources of BC and BrC to the indoor environment by concurrently measuring real-time concentrations of these air pollutants indoors and outdoors during the month-long HOMEChem study. The median indoor-to-outdoor ratios of BC and BrC during the periods of no activity inside the test house were 0.6 and 0.7, respectively. The absorption Ångström exponent was used to characterize light-absorbing particle emissions during different activities and ranged from 1.1 to 2.7 throughout the campaign, with the highest value (indicative of BrC-dominated emissions) observed during the preparation of a simulated Thanksgiving Day holiday style meal. An indoor BC exposure assessment shows that exposure for an occupant present in the kitchen area was ∼4 times higher during Thanksgiving Day experiments (primarily due to candle burning) when compared to the background conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Carbono/análise , Culinária , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Fuligem/análise
13.
Indoor Air ; 31(6): 2099-2117, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34272904

RESUMO

Quantifying speciated concentrations and emissions of volatile organic compounds (VOCs) is critical to understanding the processes that control indoor VOC dynamics, airborne chemistry, and human exposures. Here, we present source strength profiles from the HOMEChem study, quantifying speciated VOC emissions from scripted experiments (with multiple replicates) of cooking, cleaning, and human occupancy and from unperturbed baseline measurements of the building and its contents. Measurements using a proton transfer reaction time-of-flight mass spectrometer were combined with tracer-based determinations of air-change rates to enable mass-balance-based calculations of speciated, time-resolved VOC source strengths. The building and its contents were the dominant emission source into the house, with large emissions of acetic acid, methanol, and formic acid. Cooking emissions were greater than cleaning emissions and were dominated by ethanol. Bleach cleaning generated high emissions of chlorinated compounds, whereas natural product cleaning emitted predominantly terpenoids. Occupancy experiments showed large emissions of siloxanes from personal care products in the morning, with much lower emissions in the afternoon. From these results, VOC emissions were simulated for a hypothetical 24-h period, showing that emissions from the house and its contents make up nearly half of total indoor VOC emissions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária , Monitoramento Ambiental , Humanos , Compostos Orgânicos Voláteis/análise
14.
Environ Sci Technol ; 55(10): 6740-6751, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33945266

RESUMO

Time spent in residences substantially contributes to human exposure to volatile organic compounds (VOCs). Such exposures have been difficult to study deeply, in part because VOC concentrations and indoor occupancy vary rapidly. Using a fast-response online mass spectrometer, we report time-resolved exposures from multi-season sampling of more than 200 VOCs in two California residences. Chemical-specific source apportionment revealed that time-averaged exposures for most VOCs were mainly attributable to continuous indoor emissions from buildings and their static contents. Also contributing to exposures were occupant-related activities, such as cooking, and outdoor-to-indoor transport. Health risk assessments are possible for a subset of observed VOCs. Acrolein, acetaldehyde, and acrylic acid concentrations were above chronic advisory health guidelines, whereas exposures for other assessable species were typically well below the guideline levels. Studied residences were built in the mid-20th century, indicating that VOC emissions even from older buildings and their contents can substantially contribute to occupant exposures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , California , Monitoramento Ambiental , Habitação , Humanos , Compostos Orgânicos Voláteis/análise
15.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526680

RESUMO

Outdoor ozone transported indoors initiates oxidative chemistry, forming volatile organic products. The influence of ozone chemistry on indoor air composition has not been directly quantified in normally occupied residences. Here, we explore indoor ozone chemistry in a house in California with two adult inhabitants. We utilize space- and time-resolved measurements of ozone and volatile organic compounds (VOCs) acquired over an 8-wk summer campaign. Despite overall low indoor ozone concentrations (mean value of 4.3 ppb) and a relatively low indoor ozone decay constant (1.3 h-1), we identified multiple VOCs exhibiting clear contributions from ozone-initiated chemistry indoors. These chemicals include 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), nonenal, and C8-C12 saturated aldehydes, which are among the commonly reported products from laboratory studies of ozone interactions with indoor surfaces and with human skin lipids. These VOCs together accounted for ≥12% molecular yield with respect to house-wide consumed ozone, with the highest net product yield for nonanal (≥3.5%), followed by 6-MHO (2.7%) and 4-OPA (2.6%). Although 6-MHO and 4-OPA are prominent ozonolysis products of skin lipids (specifically squalene), ozone reaction with the body envelopes of the two occupants in this house are insufficient to explain the observed yields. Relatedly, we observed that ozone-driven chemistry continued to produce 6-MHO and 4-OPA even after the occupants had been away from the house for 5 d. These observations provide evidence that skin lipids transferred to indoor surfaces made substantial contributions to ozone reactivity in the studied house.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental , Ozônio/química , Compostos Orgânicos Voláteis/química , Poluentes Atmosféricos/isolamento & purificação , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Aldeídos/química , California/epidemiologia , Humanos , Cetonas/química , Lipídeos/química , Oxirredução/efeitos dos fármacos , Ozônio/isolamento & purificação , Ozônio/metabolismo , Esqualeno/química , Compostos Orgânicos Voláteis/isolamento & purificação
16.
Indoor Air ; 31(2): 282-313, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33403728

RESUMO

Air-change rate is an important parameter influencing residential air quality. This article critically assesses the state of knowledge regarding residential air-change rates, emphasizing periods of normal occupancy. Cumulatively, about 40 prior studies have measured air-change rates in approximately 10,000 homes using tracer gases, including metabolic CO2 . The central tendency of the air-change rates determined in these studies is reasonably described as lognormal with a geometric mean of 0.5 h-1 and a geometric standard deviation of 2.0. However, the geometric means of individual studies vary, mainly within the range 0.2-1 h-1 . Air-change rates also vary with time in residences. Factors influencing the air-change rate include weather (indoor-outdoor temperature difference and wind speed), the leakiness of the building envelope, and, when present, operation of mechanical ventilation systems. Occupancy-associated factors are also important, including window opening, induced exhaust from flued combustion, and use of heating and cooling systems. Empirical and methodological challenges remain to be effectively addressed. These include clarifying the time variation of air-change rates in residences during occupancy and understanding the influence of time-varying air-change rates on tracer-gas measurement techniques. Important opportunities are available to improve understanding of air-change rates and interzonal flows as factors affecting the source-to-exposure relationships for indoor air pollutants.


Assuntos
Poluição do Ar em Ambientes Fechados , Exposição Ambiental , Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Gases , Habitação , Humanos , Estações do Ano , Emissões de Veículos , Ventilação , Tempo (Meteorologia) , Vento
17.
Indoor Air ; 31(2): 314-323, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32979298

RESUMO

During the 2020 COVID-19 pandemic, an outbreak occurred following attendance of a symptomatic index case at a weekly rehearsal on 10 March of the Skagit Valley Chorale (SVC). After that rehearsal, 53 members of the SVC among 61 in attendance were confirmed or strongly suspected to have contracted COVID-19 and two died. Transmission by the aerosol route is likely; it appears unlikely that either fomite or ballistic droplet transmission could explain a substantial fraction of the cases. It is vital to identify features of cases such as this to better understand the factors that promote superspreading events. Based on a conditional assumption that transmission during this outbreak was dominated by inhalation of respiratory aerosol generated by one index case, we use the available evidence to infer the emission rate of aerosol infectious quanta. We explore how the risk of infection would vary with several influential factors: ventilation rate, duration of event, and deposition onto surfaces. The results indicate a best-estimate emission rate of 970 ± 390 quanta/h. Infection risk would be reduced by a factor of two by increasing the aerosol loss rate to 5 h-1 and shortening the event duration from 2.5 to 1 h.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Canto , Ventilação/métodos , Fômites/virologia , Humanos , SARS-CoV-2 , Fatores de Tempo , Washington/epidemiologia
19.
Indoor Air ; 31(1): 88-98, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32779288

RESUMO

Inhalation of particulate matter is associated with adverse health outcomes. The fluorescent portion of supermicron particulate matter has been used as a proxy for bioaerosols. The sources and emission rates of fluorescent particles in residential environments are not well-understood. Using an ultraviolet aerodynamic particle sizer (UVAPS), emissions of total and fluorescent supermicron particles from common human activities were investigated during the HOMEChem campaign, a test-house investigation of the chemistry of indoor environments. Human occupancy and activities, including cooking and mopping, were found to be considerable sources of indoor supermicron fluorescent particles, which enhanced the indoor particle concentrations by two orders of magnitude above baseline levels. The estimated total (fluorescent) mass emission rates for the activities tested were in the range of 4-30 (1-11) mg per person meal for cooking and 0.1-4.9 (0.05-4.7) mg/h for occupancy and mopping. Model calculations indicate that, once released, the dominant fate of coarse particles (2.5-10 micrometer in diameter) was deposition onto indoor surfaces, allowing for the possibility of subsequent resuspension and consequent exposures over durations much longer than the ventilation time scale. Indoor coarse particle deposition would also contribute to soiling of indoor surfaces.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Culinária , Monitoramento Ambiental , Habitação , Humanos , Tamanho da Partícula
20.
Environ Sci Technol ; 54(11): 6751-6760, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32379430

RESUMO

Measurements by semivolatile thermal desorption aerosol gas chromatography (SV-TAG) were used to investigate how semivolatile organic compounds (SVOCs) partition among indoor reservoirs in (1) a manufactured test house under controlled conditions (HOMEChem campaign) and (2) a single-family residence when vacant (H2 campaign). Data for phthalate diesters and siloxanes suggest that volatility-dependent partitioning processes modulate airborne SVOC concentrations through interactions with surface-laden condensed-phase reservoirs. Airborne concentrations of SVOCs with vapor pressures in the range of C13 to C23 alkanes were observed to be correlated with indoor air temperature. Observed temperature dependencies were quantitatively similar to theoretical predictions that assumed a surface-air boundary layer with equilibrium partitioning maintained at the air-surface interface. Airborne concentrations of SVOCs with vapor pressures corresponding to C25 to C31 alkanes correlated with airborne particle mass concentration. For SVOCs with higher vapor pressures, which are expected to be predominantly gaseous, correlations with particle mass concentration were weak or nonexistent. During primary particle emission events, enhanced gas-phase emissions from condensed-phase reservoirs partitioned to airborne particles, contributing substantially to organic particulate matter. An emission event related to oven-usage was inferred to deposit siloxanes in condensed-phase reservoirs throughout the house, leading to the possibility of reemission during subsequent periods with high particle loading.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Habitação , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...